# BER encoder
from pyasn1.type import base, tag, univ, char, useful
from pyasn1.codec.ber import eoo
from pyasn1.compat.octets import int2oct, oct2int, ints2octs, null, str2octs
from pyasn1 import debug, error
class Error(Exception): pass
class AbstractItemEncoder:
supportIndefLenMode = 1
def encodeTag(self, t, isConstructed):
tagClass, tagFormat, tagId = t.asTuple() # this is a hotspot
v = tagClass | tagFormat
if isConstructed:
v = v|tag.tagFormatConstructed
if tagId < 31:
return int2oct(v|tagId)
else:
s = int2oct(tagId&0x7f)
tagId = tagId >> 7
while tagId:
s = int2oct(0x80|(tagId&0x7f)) + s
tagId = tagId >> 7
return int2oct(v|0x1F) + s
def encodeLength(self, length, defMode):
if not defMode and self.supportIndefLenMode:
return int2oct(0x80)
if length < 0x80:
return int2oct(length)
else:
substrate = null
while length:
substrate = int2oct(length&0xff) + substrate
length = length >> 8
substrateLen = len(substrate)
if substrateLen > 126:
raise Error('Length octets overflow (%d)' % substrateLen)
return int2oct(0x80 | substrateLen) + substrate
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
raise Error('Not implemented')
def _encodeEndOfOctets(self, encodeFun, defMode):
if defMode or not self.supportIndefLenMode:
return null
else:
return encodeFun(eoo.endOfOctets, defMode)
def encode(self, encodeFun, value, defMode, maxChunkSize):
substrate, isConstructed = self.encodeValue(
encodeFun, value, defMode, maxChunkSize
)
tagSet = value.getTagSet()
if tagSet:
if not isConstructed: # primitive form implies definite mode
defMode = 1
return self.encodeTag(
tagSet[-1], isConstructed
) + self.encodeLength(
len(substrate), defMode
) + substrate + self._encodeEndOfOctets(encodeFun, defMode)
else:
return substrate # untagged value
class EndOfOctetsEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
return null, 0
class ExplicitlyTaggedItemEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
if isinstance(value, base.AbstractConstructedAsn1Item):
value = value.clone(tagSet=value.getTagSet()[:-1],
cloneValueFlag=1)
else:
value = value.clone(tagSet=value.getTagSet()[:-1])
return encodeFun(value, defMode, maxChunkSize), 1
explicitlyTaggedItemEncoder = ExplicitlyTaggedItemEncoder()
class BooleanEncoder(AbstractItemEncoder):
supportIndefLenMode = 0
_true = ints2octs((1,))
_false = ints2octs((0,))
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
return value and self._true or self._false, 0
class IntegerEncoder(AbstractItemEncoder):
supportIndefLenMode = 0
supportCompactZero = False
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
if value == 0: # shortcut for zero value
if self.supportCompactZero:
# this seems to be a correct way for encoding zeros
return null, 0
else:
# this seems to be a widespread way for encoding zeros
return ints2octs((0,)), 0
octets = []
value = int(value) # to save on ops on asn1 type
while 1:
octets.insert(0, value & 0xff)
if value == 0 or value == -1:
break
value = value >> 8
if value == 0 and octets[0] & 0x80:
octets.insert(0, 0)
while len(octets) > 1 and \
(octets[0] == 0 and octets[1] & 0x80 == 0 or \
octets[0] == 0xff and octets[1] & 0x80 != 0):
del octets[0]
return ints2octs(octets), 0
class BitStringEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
if not maxChunkSize or len(value) <= maxChunkSize*8:
out_len = (len(value) + 7) // 8
out_list = out_len * [0]
j = 7
i = -1
for val in value:
j += 1
if j == 8:
i += 1
j = 0
out_list[i] = out_list[i] | val << (7-j)
return int2oct(7-j) + ints2octs(out_list), 0
else:
pos = 0; substrate = null
while 1:
# count in octets
v = value.clone(value[pos*8:pos*8+maxChunkSize*8])
if not v:
break
substrate = substrate + encodeFun(v, defMode, maxChunkSize)
pos = pos + maxChunkSize
return substrate, 1
class OctetStringEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
if not maxChunkSize or len(value) <= maxChunkSize:
return value.asOctets(), 0
else:
pos = 0; substrate = null
while 1:
v = value.clone(value[pos:pos+maxChunkSize])
if not v:
break
substrate = substrate + encodeFun(v, defMode, maxChunkSize)
pos = pos + maxChunkSize
return substrate, 1
class NullEncoder(AbstractItemEncoder):
supportIndefLenMode = 0
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
return null, 0
class ObjectIdentifierEncoder(AbstractItemEncoder):
supportIndefLenMode = 0
precomputedValues = {
(1, 3, 6, 1, 2): (43, 6, 1, 2),
(1, 3, 6, 1, 4): (43, 6, 1, 4)
}
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
oid = value.asTuple()
if oid[:5] in self.precomputedValues:
octets = self.precomputedValues[oid[:5]]
oid = oid[5:]
else:
if len(oid) < 2:
raise error.PyAsn1Error('Short OID %s' % (value,))
octets = ()
# Build the first twos
if oid[0] == 0 and 0 <= oid[1] <= 39:
oid = (oid[1],) + oid[2:]
elif oid[0] == 1 and 0 <= oid[1] <= 39:
oid = (oid[1] + 40,) + oid[2:]
elif oid[0] == 2:
oid = (oid[1] + 80,) + oid[2:]
else:
raise error.PyAsn1Error(
'Impossible initial arcs %s at %s' % (oid[:2], value)
)
# Cycle through subIds
for subId in oid:
if subId > -1 and subId < 128:
# Optimize for the common case
octets = octets + (subId & 0x7f,)
elif subId < 0:
raise error.PyAsn1Error(
'Negative OID arc %s at %s' % (subId, value)
)
else:
# Pack large Sub-Object IDs
res = (subId & 0x7f,)
subId = subId >> 7
while subId > 0:
res = (0x80 | (subId & 0x7f),) + res
subId = subId >> 7
# Add packed Sub-Object ID to resulted Object ID
octets += res
return ints2octs(octets), 0
class RealEncoder(AbstractItemEncoder):
supportIndefLenMode = 0
binEncBase = 2 # set to None to choose encoding base automatically
def _dropFloatingPoint(self, m, encbase, e):
ms, es = 1, 1
if m < 0:
ms = -1 # mantissa sign
if e < 0:
es = -1 # exponenta sign
m *= ms
if encbase == 8:
m = m*2**(abs(e) % 3 * es)
e = abs(e) // 3 * es
elif encbase == 16:
m = m*2**(abs(e) % 4 * es)
e = abs(e) // 4 * es
while 1:
if int(m) != m:
m *= encbase
e -= 1
continue
break
return ms, int(m), encbase, e
def _chooseEncBase(self, value):
m, b, e = value
base = [2, 8, 16]
if value.binEncBase in base:
return self._dropFloatingPoint(m, value.binEncBase, e)
elif self.binEncBase in base:
return self._dropFloatingPoint(m, self.binEncBase, e)
# auto choosing base 2/8/16
mantissa = [m, m, m]
exponenta = [e, e, e]
encbase = 2
e = float('inf')
for i in range(3):
sign, mantissa[i], base[i], exponenta[i] = \
self._dropFloatingPoint(mantissa[i], base[i], exponenta[i])
if abs(exponenta[i]) < abs(e) or \
(abs(exponenta[i]) == abs(e) and mantissa[i] < m):
e = exponenta[i]
m = int(mantissa[i])
encbase = base[i]
return sign, m, encbase, e
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
if value.isPlusInfinity():
return int2oct(0x40), 0
if value.isMinusInfinity():
return int2oct(0x41), 0
m, b, e = value
if not m:
return null, 0
if b == 10:
return str2octs('\x03%dE%s%d' % (m, e == 0 and '+' or '', e)), 0
elif b == 2:
fo = 0x80 # binary encoding
ms, m, encbase, e = self._chooseEncBase(value)
if ms < 0: # mantissa sign
fo = fo | 0x40 # sign bit
# exponenta & mantissa normalization
if encbase == 2:
while m & 0x1 == 0:
m >>= 1
e += 1
elif encbase == 8:
while m & 0x7 == 0:
m >>= 3
e += 1
fo |= 0x10
else: # encbase = 16
while m & 0xf == 0:
m >>= 4
e += 1
fo |= 0x20
sf = 0 # scale factor
while m & 0x1 == 0:
m >>= 1
sf += 1
if sf > 3:
raise error.PyAsn1Error('Scale factor overflow') # bug if raised
fo |= sf << 2
eo = null
if e == 0 or e == -1:
eo = int2oct(e&0xff)
else:
while e not in (0, -1):
eo = int2oct(e&0xff) + eo
e >>= 8
if e == 0 and eo and oct2int(eo[0]) & 0x80:
eo = int2oct(0) + eo
if e == -1 and eo and not (oct2int(eo[0]) & 0x80):
eo = int2oct(0xff) + eo
n = len(eo)
if n > 0xff:
raise error.PyAsn1Error('Real exponent overflow')
if n == 1:
pass
elif n == 2:
fo |= 1
elif n == 3:
fo |= 2
else:
fo |= 3
eo = int2oct(n&0xff) + eo
po = null
while m:
po = int2oct(m&0xff) + po
m >>= 8
substrate = int2oct(fo) + eo + po
return substrate, 0
else:
raise error.PyAsn1Error('Prohibited Real base %s' % b)
class SequenceEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
value.setDefaultComponents()
value.verifySizeSpec()
substrate = null; idx = len(value)
while idx > 0:
idx = idx - 1
if value[idx] is None: # Optional component
continue
component = value.getDefaultComponentByPosition(idx)
if component is not None and component == value[idx]:
continue
substrate = encodeFun(
value[idx], defMode, maxChunkSize
) + substrate
return substrate, 1
class SequenceOfEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
value.verifySizeSpec()
substrate = null; idx = len(value)
while idx > 0:
idx = idx - 1
substrate = encodeFun(
value[idx], defMode, maxChunkSize
) + substrate
return substrate, 1
class ChoiceEncoder(AbstractItemEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
return encodeFun(value.getComponent(), defMode, maxChunkSize), 1
class AnyEncoder(OctetStringEncoder):
def encodeValue(self, encodeFun, value, defMode, maxChunkSize):
return value.asOctets(), defMode == 0
tagMap = {
eoo.endOfOctets.tagSet: EndOfOctetsEncoder(),
univ.Boolean.tagSet: BooleanEncoder(),
univ.Integer.tagSet: IntegerEncoder(),
univ.BitString.tagSet: BitStringEncoder(),
univ.OctetString.tagSet: OctetStringEncoder(),
univ.Null.tagSet: NullEncoder(),
univ.ObjectIdentifier.tagSet: ObjectIdentifierEncoder(),
univ.Enumerated.tagSet: IntegerEncoder(),
univ.Real.tagSet: RealEncoder(),
# Sequence & Set have same tags as SequenceOf & SetOf
univ.SequenceOf.tagSet: SequenceOfEncoder(),
univ.SetOf.tagSet: SequenceOfEncoder(),
univ.Choice.tagSet: ChoiceEncoder(),
# character string types
char.UTF8String.tagSet: OctetStringEncoder(),
char.NumericString.tagSet: OctetStringEncoder(),
char.PrintableString.tagSet: OctetStringEncoder(),
char.TeletexString.tagSet: OctetStringEncoder(),
char.VideotexString.tagSet: OctetStringEncoder(),
char.IA5String.tagSet: OctetStringEncoder(),
char.GraphicString.tagSet: OctetStringEncoder(),
char.VisibleString.tagSet: OctetStringEncoder(),
char.GeneralString.tagSet: OctetStringEncoder(),
char.UniversalString.tagSet: OctetStringEncoder(),
char.BMPString.tagSet: OctetStringEncoder(),
# useful types
useful.ObjectDescriptor.tagSet: OctetStringEncoder(),
useful.GeneralizedTime.tagSet: OctetStringEncoder(),
useful.UTCTime.tagSet: OctetStringEncoder()
}
# Type-to-codec map for ambiguous ASN.1 types
typeMap = {
univ.Set.typeId: SequenceEncoder(),
univ.SetOf.typeId: SequenceOfEncoder(),
univ.Sequence.typeId: SequenceEncoder(),
univ.SequenceOf.typeId: SequenceOfEncoder(),
univ.Choice.typeId: ChoiceEncoder(),
univ.Any.typeId: AnyEncoder()
}
class Encoder:
supportIndefLength = True
def __init__(self, tagMap, typeMap={}):
self.__tagMap = tagMap
self.__typeMap = typeMap
def __call__(self, value, defMode=True, maxChunkSize=0):
if not defMode and not self.supportIndefLength:
raise error.PyAsn1Error('Indefinite length encoding not supported by this codec')
debug.logger & debug.flagEncoder and debug.logger('encoder called in %sdef mode, chunk size %s for type %s, value:\n%s' % (not defMode and 'in' or '', maxChunkSize, value.prettyPrintType(), value.prettyPrint()))
tagSet = value.getTagSet()
if len(tagSet) > 1:
concreteEncoder = explicitlyTaggedItemEncoder
else:
if value.typeId is not None and value.typeId in self.__typeMap:
concreteEncoder = self.__typeMap[value.typeId]
elif tagSet in self.__tagMap:
concreteEncoder = self.__tagMap[tagSet]
else:
tagSet = value.baseTagSet
if tagSet in self.__tagMap:
concreteEncoder = self.__tagMap[tagSet]
else:
raise Error('No encoder for %s' % (value,))
debug.logger & debug.flagEncoder and debug.logger('using value codec %s chosen by %s' % (concreteEncoder.__class__.__name__, tagSet))
substrate = concreteEncoder.encode(
self, value, defMode, maxChunkSize
)
debug.logger & debug.flagEncoder and debug.logger('built %s octets of substrate: %s\nencoder completed' % (len(substrate), debug.hexdump(substrate)))
return substrate
encode = Encoder(tagMap, typeMap)