# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
"""A fast, lightweight IPv4/IPv6 manipulation library in Python.
This library is used to create/poke/manipulate IPv4 and IPv6 addresses
and networks.
"""
from __future__ import unicode_literals
import itertools
import struct
__version__ = '1.0.17'
# Compatibility functions
_compat_int_types = (int,)
try:
_compat_int_types = (int, long)
except NameError:
pass
try:
_compat_str = unicode
except NameError:
_compat_str = str
assert bytes != str
if b'\0'[0] == 0: # Python 3 semantics
def _compat_bytes_to_byte_vals(byt):
return byt
else:
def _compat_bytes_to_byte_vals(byt):
return [struct.unpack(b'!B', b)[0] for b in byt]
try:
_compat_int_from_byte_vals = int.from_bytes
except AttributeError:
def _compat_int_from_byte_vals(bytvals, endianess):
assert endianess == 'big'
res = 0
for bv in bytvals:
assert isinstance(bv, _compat_int_types)
res = (res << 8) + bv
return res
def _compat_to_bytes(intval, length, endianess):
assert isinstance(intval, _compat_int_types)
assert endianess == 'big'
if length == 4:
if intval < 0 or intval >= 2 ** 32:
raise struct.error("integer out of range for 'I' format code")
return struct.pack(b'!I', intval)
elif length == 16:
if intval < 0 or intval >= 2 ** 128:
raise struct.error("integer out of range for 'QQ' format code")
return struct.pack(b'!QQ', intval >> 64, intval & 0xffffffffffffffff)
else:
raise NotImplementedError()
if hasattr(int, 'bit_length'):
# Not int.bit_length , since that won't work in 2.7 where long exists
def _compat_bit_length(i):
return i.bit_length()
else:
def _compat_bit_length(i):
for res in itertools.count():
if i >> res == 0:
return res
def _compat_range(start, end, step=1):
assert step > 0
i = start
while i < end:
yield i
i += step
class _TotalOrderingMixin(object):
__slots__ = ()
# Helper that derives the other comparison operations from
# __lt__ and __eq__
# We avoid functools.total_ordering because it doesn't handle
# NotImplemented correctly yet (http://bugs.python.org/issue10042)
def __eq__(self, other):
raise NotImplementedError
def __ne__(self, other):
equal = self.__eq__(other)
if equal is NotImplemented:
return NotImplemented
return not equal
def __lt__(self, other):
raise NotImplementedError
def __le__(self, other):
less = self.__lt__(other)
if less is NotImplemented or not less:
return self.__eq__(other)
return less
def __gt__(self, other):
less = self.__lt__(other)
if less is NotImplemented:
return NotImplemented
equal = self.__eq__(other)
if equal is NotImplemented:
return NotImplemented
return not (less or equal)
def __ge__(self, other):
less = self.__lt__(other)
if less is NotImplemented:
return NotImplemented
return not less
IPV4LENGTH = 32
IPV6LENGTH = 128
class AddressValueError(ValueError):
"""A Value Error related to the address."""
class NetmaskValueError(ValueError):
"""A Value Error related to the netmask."""
def ip_address(address):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
Returns:
An IPv4Address or IPv6Address object.
Raises:
ValueError: if the *address* passed isn't either a v4 or a v6
address
"""
try:
return IPv4Address(address)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Address(address)
except (AddressValueError, NetmaskValueError):
pass
if isinstance(address, bytes):
raise AddressValueError(
'%r does not appear to be an IPv4 or IPv6 address. '
'Did you pass in a bytes (str in Python 2) instead of'
' a unicode object?' % address)
raise ValueError('%r does not appear to be an IPv4 or IPv6 address' %
address)
def ip_network(address, strict=True):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP network. Either IPv4 or
IPv6 networks may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
Returns:
An IPv4Network or IPv6Network object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address. Or if the network has host bits set.
"""
try:
return IPv4Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
if isinstance(address, bytes):
raise AddressValueError(
'%r does not appear to be an IPv4 or IPv6 network. '
'Did you pass in a bytes (str in Python 2) instead of'
' a unicode object?' % address)
raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
address)
def ip_interface(address):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
Returns:
An IPv4Interface or IPv6Interface object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address.
Notes:
The IPv?Interface classes describe an Address on a particular
Network, so they're basically a combination of both the Address
and Network classes.
"""
try:
return IPv4Interface(address)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Interface(address)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 interface' %
address)
def v4_int_to_packed(address):
"""Represent an address as 4 packed bytes in network (big-endian) order.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The integer address packed as 4 bytes in network (big-endian) order.
Raises:
ValueError: If the integer is negative or too large to be an
IPv4 IP address.
"""
try:
return _compat_to_bytes(address, 4, 'big')
except (struct.error, OverflowError):
raise ValueError("Address negative or too large for IPv4")
def v6_int_to_packed(address):
"""Represent an address as 16 packed bytes in network (big-endian) order.
Args:
address: An integer representation of an IPv6 IP address.
Returns:
The integer address packed as 16 bytes in network (big-endian) order.
"""
try:
return _compat_to_bytes(address, 16, 'big')
except (struct.error, OverflowError):
raise ValueError("Address negative or too large for IPv6")
def _split_optional_netmask(address):
"""Helper to split the netmask and raise AddressValueError if needed"""
addr = _compat_str(address).split('/')
if len(addr) > 2:
raise AddressValueError("Only one '/' permitted in %r" % address)
return addr
def _find_address_range(addresses):
"""Find a sequence of sorted deduplicated IPv#Address.
Args:
addresses: a list of IPv#Address objects.
Yields:
A tuple containing the first and last IP addresses in the sequence.
"""
it = iter(addresses)
first = last = next(it)
for ip in it:
if ip._ip != last._ip + 1:
yield first, last
first = ip
last = ip
yield first, last
def _count_righthand_zero_bits(number, bits):
"""Count the number of zero bits on the right hand side.
Args:
number: an integer.
bits: maximum number of bits to count.
Returns:
The number of zero bits on the right hand side of the number.
"""
if number == 0:
return bits
return min(bits, _compat_bit_length(~number & (number - 1)))
def summarize_address_range(first, last):
"""Summarize a network range given the first and last IP addresses.
Example:
>>> list(summarize_address_range(IPv4Address('192.0.2.0'),
... IPv4Address('192.0.2.130')))
... #doctest: +NORMALIZE_WHITESPACE
[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'),
IPv4Network('192.0.2.130/32')]
Args:
first: the first IPv4Address or IPv6Address in the range.
last: the last IPv4Address or IPv6Address in the range.
Returns:
An iterator of the summarized IPv(4|6) network objects.
Raise:
TypeError:
If the first and last objects are not IP addresses.
If the first and last objects are not the same version.
ValueError:
If the last object is not greater than the first.
If the version of the first address is not 4 or 6.
"""
if (not (isinstance(first, _BaseAddress) and
isinstance(last, _BaseAddress))):
raise TypeError('first and last must be IP addresses, not networks')
if first.version != last.version:
raise TypeError("%s and %s are not of the same version" % (
first, last))
if first > last:
raise ValueError('last IP address must be greater than first')
if first.version == 4:
ip = IPv4Network
elif first.version == 6:
ip = IPv6Network
else:
raise ValueError('unknown IP version')
ip_bits = first._max_prefixlen
first_int = first._ip
last_int = last._ip
while first_int <= last_int:
nbits = min(_count_righthand_zero_bits(first_int, ip_bits),
_compat_bit_length(last_int - first_int + 1) - 1)
net = ip((first_int, ip_bits - nbits))
yield net
first_int += 1 << nbits
if first_int - 1 == ip._ALL_ONES:
break
def _collapse_addresses_internal(addresses):
"""Loops through the addresses, collapsing concurrent netblocks.
Example:
ip1 = IPv4Network('192.0.2.0/26')
ip2 = IPv4Network('192.0.2.64/26')
ip3 = IPv4Network('192.0.2.128/26')
ip4 = IPv4Network('192.0.2.192/26')
_collapse_addresses_internal([ip1, ip2, ip3, ip4]) ->
[IPv4Network('192.0.2.0/24')]
This shouldn't be called directly; it is called via
collapse_addresses([]).
Args:
addresses: A list of IPv4Network's or IPv6Network's
Returns:
A list of IPv4Network's or IPv6Network's depending on what we were
passed.
"""
# First merge
to_merge = list(addresses)
subnets = {}
while to_merge:
net = to_merge.pop()
supernet = net.supernet()
existing = subnets.get(supernet)
if existing is None:
subnets[supernet] = net
elif existing != net:
# Merge consecutive subnets
del subnets[supernet]
to_merge.append(supernet)
# Then iterate over resulting networks, skipping subsumed subnets
last = None
for net in sorted(subnets.values()):
if last is not None:
# Since they are sorted,
# last.network_address <= net.network_address is a given.
if last.broadcast_address >= net.broadcast_address:
continue
yield net
last = net
def collapse_addresses(addresses):
"""Collapse a list of IP objects.
Example:
collapse_addresses([IPv4Network('192.0.2.0/25'),
IPv4Network('192.0.2.128/25')]) ->
[IPv4Network('192.0.2.0/24')]
Args:
addresses: An iterator of IPv4Network or IPv6Network objects.
Returns:
An iterator of the collapsed IPv(4|6)Network objects.
Raises:
TypeError: If passed a list of mixed version objects.
"""
addrs = []
ips = []
nets = []
# split IP addresses and networks
for ip in addresses:
if isinstance(ip, _BaseAddress):
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
ips.append(ip)
elif ip._prefixlen == ip._max_prefixlen:
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
try:
ips.append(ip.ip)
except AttributeError:
ips.append(ip.network_address)
else:
if nets and nets[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, nets[-1]))
nets.append(ip)
# sort and dedup
ips = sorted(set(ips))
# find consecutive address ranges in the sorted sequence and summarize them
if ips:
for first, last in _find_address_range(ips):
addrs.extend(summarize_address_range(first, last))
return _collapse_addresses_internal(addrs + nets)
def get_mixed_type_key(obj):
"""Return a key suitable for sorting between networks and addresses.
Address and Network objects are not sortable by default; they're
fundamentally different so the expression
IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24')
doesn't make any sense. There are some times however, where you may wish
to have ipaddress sort these for you anyway. If you need to do this, you
can use this function as the key= argument to sorted().
Args:
obj: either a Network or Address object.
Returns:
appropriate key.
"""
if isinstance(obj, _BaseNetwork):
return obj._get_networks_key()
elif isinstance(obj, _BaseAddress):
return obj._get_address_key()
return NotImplemented
class _IPAddressBase(_TotalOrderingMixin):
"""The mother class."""
__slots__ = ()
@property
def exploded(self):
"""Return the longhand version of the IP address as a string."""
return self._explode_shorthand_ip_string()
@property
def compressed(self):
"""Return the shorthand version of the IP address as a string."""
return _compat_str(self)
@property
def reverse_pointer(self):
"""The name of the reverse DNS pointer for the IP address, e.g.:
>>> ipaddress.ip_address("127.0.0.1").reverse_pointer
'1.0.0.127.in-addr.arpa'
>>> ipaddress.ip_address("2001:db8::1").reverse_pointer
'1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa'
"""
return self._reverse_pointer()
@property
def version(self):
msg = '%200s has no version specified' % (type(self),)
raise NotImplementedError(msg)
def _check_int_address(self, address):
if address < 0:
msg = "%d (< 0) is not permitted as an IPv%d address"
raise AddressValueError(msg % (address, self._version))
if address > self._ALL_ONES:
msg = "%d (>= 2**%d) is not permitted as an IPv%d address"
raise AddressValueError(msg % (address, self._max_prefixlen,
self._version))
def _check_packed_address(self, address, expected_len):
address_len = len(address)
if address_len != expected_len:
msg = (
'%r (len %d != %d) is not permitted as an IPv%d address. '
'Did you pass in a bytes (str in Python 2) instead of'
' a unicode object?'
)
raise AddressValueError(msg % (address, address_len,
expected_len, self._version))
@classmethod
def _ip_int_from_prefix(cls, prefixlen):
"""Turn the prefix length into a bitwise netmask
Args:
prefixlen: An integer, the prefix length.
Returns:
An integer.
"""
return cls._ALL_ONES ^ (cls._ALL_ONES >> prefixlen)
@classmethod
def _prefix_from_ip_int(cls, ip_int):
"""Return prefix length from the bitwise netmask.
Args:
ip_int: An integer, the netmask in expanded bitwise format
Returns:
An integer, the prefix length.
Raises:
ValueError: If the input intermingles zeroes & ones
"""
trailing_zeroes = _count_righthand_zero_bits(ip_int,
cls._max_prefixlen)
prefixlen = cls._max_prefixlen - trailing_zeroes
leading_ones = ip_int >> trailing_zeroes
all_ones = (1 << prefixlen) - 1
if leading_ones != all_ones:
byteslen = cls._max_prefixlen // 8
details = _compat_to_bytes(ip_int, byteslen, 'big')
msg = 'Netmask pattern %r mixes zeroes & ones'
raise ValueError(msg % details)
return prefixlen
@classmethod
def _report_invalid_netmask(cls, netmask_str):
msg = '%r is not a valid netmask' % netmask_str
raise NetmaskValueError(msg)
@classmethod
def _prefix_from_prefix_string(cls, prefixlen_str):
"""Return prefix length from a numeric string
Args:
prefixlen_str: The string to be converted
Returns:
An integer, the prefix length.
Raises:
NetmaskValueError: If the input is not a valid netmask
"""
# int allows a leading +/- as well as surrounding whitespace,
# so we ensure that isn't the case
if not _BaseV4._DECIMAL_DIGITS.issuperset(prefixlen_str):
cls._report_invalid_netmask(prefixlen_str)
try:
prefixlen = int(prefixlen_str)
except ValueError:
cls._report_invalid_netmask(prefixlen_str)
if not (0 <= prefixlen <= cls._max_prefixlen):
cls._report_invalid_netmask(prefixlen_str)
return prefixlen
@classmethod
def _prefix_from_ip_string(cls, ip_str):
"""Turn a netmask/hostmask string into a prefix length
Args:
ip_str: The netmask/hostmask to be converted
Returns:
An integer, the prefix length.
Raises:
NetmaskValueError: If the input is not a valid netmask/hostmask
"""
# Parse the netmask/hostmask like an IP address.
try:
ip_int = cls._ip_int_from_string(ip_str)
except AddressValueError:
cls._report_invalid_netmask(ip_str)
# Try matching a netmask (this would be /1*0*/ as a bitwise regexp).
# Note that the two ambiguous cases (all-ones and all-zeroes) are
# treated as netmasks.
try:
return cls._prefix_from_ip_int(ip_int)
except ValueError:
pass
# Invert the bits, and try matching a /0+1+/ hostmask instead.
ip_int ^= cls._ALL_ONES
try:
return cls._prefix_from_ip_int(ip_int)
except ValueError:
cls._report_invalid_netmask(ip_str)
def __reduce__(self):
return self.__class__, (_compat_str(self),)
class _BaseAddress(_IPAddressBase):
"""A generic IP object.
This IP class contains the version independent methods which are
used by single IP addresses.
"""
__slots__ = ()
def __int__(self):
return self._ip
def __eq__(self, other):
try:
return (self._ip == other._ip and
self._version == other._version)
except AttributeError:
return NotImplemented
def __lt__(self, other):
if not isinstance(other, _IPAddressBase):
return NotImplemented
if not isinstance(other, _BaseAddress):
raise TypeError('%s and %s are not of the same type' % (
self, other))
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
self, other))
if self._ip != other._ip:
return self._ip < other._ip
return False
# Shorthand for Integer addition and subtraction. This is not
# meant to ever support addition/subtraction of addresses.
def __add__(self, other):
if not isinstance(other, _compat_int_types):
return NotImplemented
return self.__class__(int(self) + other)
def __sub__(self, other):
if not isinstance(other, _compat_int_types):
return NotImplemented
return self.__class__(int(self) - other)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, _compat_str(self))
def __str__(self):
return _compat_str(self._string_from_ip_int(self._ip))
def __hash__(self):
return hash(hex(int(self._ip)))
def _get_address_key(self):
return (self._version, self)
def __reduce__(self):
return self.__class__, (self._ip,)
class _BaseNetwork(_IPAddressBase):
"""A generic IP network object.
This IP class contains the version independent methods which are
used by networks.
"""
def __init__(self, address):
self._cache = {}
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, _compat_str(self))
def __str__(self):
return '%s/%d' % (self.network_address, self.prefixlen)
def hosts(self):
"""Generate Iterator over usable hosts in a network.
This is like __iter__ except it doesn't return the network
or broadcast addresses.
"""
network = int(self.network_address)
broadcast = int(self.broadcast_address)
for x in _compat_range(network + 1, broadcast):
yield self._address_class(x)
def __iter__(self):
network = int(self.network_address)
broadcast = int(self.broadcast_address)
for x in _compat_range(network, broadcast + 1):
yield self._address_class(x)
def __getitem__(self, n):
network = int(self.network_address)
broadcast = int(self.broadcast_address)
if n >= 0:
if network + n > broadcast:
raise IndexError('address out of range')
return self._address_class(network + n)
else:
n += 1
if broadcast + n < network:
raise IndexError('address out of range')
return self._address_class(broadcast + n)
def __lt__(self, other):
if not isinstance(other, _IPAddressBase):
return NotImplemented
if not isinstance(other, _BaseNetwork):
raise TypeError('%s and %s are not of the same type' % (
self, other))
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
self, other))
if self.network_address != other.network_address:
return self.network_address < other.network_address
if self.netmask != other.netmask:
return self.netmask < other.netmask
return False
def __eq__(self, other):
try:
return (self._version == other._version and
self.network_address == other.network_address and
int(self.netmask) == int(other.netmask))
except AttributeError:
return NotImplemented
def __hash__(self):
return hash(int(self.network_address) ^ int(self.netmask))
def __contains__(self, other):
# always false if one is v4 and the other is v6.
if self._version != other._version:
return False
# dealing with another network.
if isinstance(other, _BaseNetwork):
return False
# dealing with another address
else:
# address
return (int(self.network_address) <= int(other._ip) <=
int(self.broadcast_address))
def overlaps(self, other):
"""Tell if self is partly contained in other."""
return self.network_address in other or (
self.broadcast_address in other or (
other.network_address in self or (
other.broadcast_address in self)))
@property
def broadcast_address(self):
x = self._cache.get('broadcast_address')
if x is None:
x = self._address_class(int(self.network_address) |
int(self.hostmask))
self._cache['broadcast_address'] = x
return x
@property
def hostmask(self):
x = self._cache.get('hostmask')
if x is None:
x = self._address_class(int(self.netmask) ^ self._ALL_ONES)
self._cache['hostmask'] = x
return x
@property
def with_prefixlen(self):
return '%s/%d' % (self.network_address, self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (self.network_address, self.netmask)
@property
def with_hostmask(self):
return '%s/%s' % (self.network_address, self.hostmask)
@property
def num_addresses(self):
"""Number of hosts in the current subnet."""
return int(self.broadcast_address) - int(self.network_address) + 1
@property
def _address_class(self):
# Returning bare address objects (rather than interfaces) allows for
# more consistent behaviour across the network address, broadcast
# address and individual host addresses.
msg = '%200s has no associated address class' % (type(self),)
raise NotImplementedError(msg)
@property
def prefixlen(self):
return self._prefixlen
def address_exclude(self, other):
"""Remove an address from a larger block.
For example:
addr1 = ip_network('192.0.2.0/28')
addr2 = ip_network('192.0.2.1/32')
list(addr1.address_exclude(addr2)) =
[IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')]
or IPv6:
addr1 = ip_network('2001:db8::1/32')
addr2 = ip_network('2001:db8::1/128')
list(addr1.address_exclude(addr2)) =
[ip_network('2001:db8::1/128'),
ip_network('2001:db8::2/127'),
ip_network('2001:db8::4/126'),
ip_network('2001:db8::8/125'),
...
ip_network('2001:db8:8000::/33')]
Args:
other: An IPv4Network or IPv6Network object of the same type.
Returns:
An iterator of the IPv(4|6)Network objects which is self
minus other.
Raises:
TypeError: If self and other are of differing address
versions, or if other is not a network object.
ValueError: If other is not completely contained by self.
"""
if not self._version == other._version:
raise TypeError("%s and %s are not of the same version" % (
self, other))
if not isinstance(other, _BaseNetwork):
raise TypeError("%s is not a network object" % other)
if not other.subnet_of(self):
raise ValueError('%s not contained in %s' % (other, self))
if other == self:
return
# Make sure we're comparing the network of other.
other = other.__class__('%s/%s' % (other.network_address,
other.prefixlen))
s1, s2 = self.subnets()
while s1 != other and s2 != other:
if other.subnet_of(s1):
yield s2
s1, s2 = s1.subnets()
elif other.subnet_of(s2):
yield s1
s1, s2 = s2.subnets()
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(s1, s2, other))
if s1 == other:
yield s2
elif s2 == other:
yield s1
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(s1, s2, other))
def compare_networks(self, other):
"""Compare two IP objects.
This is only concerned about the comparison of the integer
representation of the network addresses. This means that the
host bits aren't considered at all in this method. If you want
to compare host bits, you can easily enough do a
'HostA._ip < HostB._ip'
Args:
other: An IP object.
Returns:
If the IP versions of self and other are the same, returns:
-1 if self < other:
eg: IPv4Network('192.0.2.0/25') < IPv4Network('192.0.2.128/25')
IPv6Network('2001:db8::1000/124') <
IPv6Network('2001:db8::2000/124')
0 if self == other
eg: IPv4Network('192.0.2.0/24') == IPv4Network('192.0.2.0/24')
IPv6Network('2001:db8::1000/124') ==
IPv6Network('2001:db8::1000/124')
1 if self > other
eg: IPv4Network('192.0.2.128/25') > IPv4Network('192.0.2.0/25')
IPv6Network('2001:db8::2000/124') >
IPv6Network('2001:db8::1000/124')
Raises:
TypeError if the IP versions are different.
"""
# does this need to raise a ValueError?
if self._version != other._version:
raise TypeError('%s and %s are not of the same type' % (
self, other))
# self._version == other._version below here:
if self.network_address < other.network_address:
return -1
if self.network_address > other.network_address:
return 1
# self.network_address == other.network_address below here:
if self.netmask < other.netmask:
return -1
if self.netmask > other.netmask:
return 1
return 0
def _get_networks_key(self):
"""Network-only key function.
Returns an object that identifies this address' network and
netmask. This function is a suitable "key" argument for sorted()
and list.sort().
"""
return (self._version, self.network_address, self.netmask)
def subnets(self, prefixlen_diff=1, new_prefix=None):
"""The subnets which join to make the current subnet.
In the case that self contains only one IP
(self._prefixlen == 32 for IPv4 or self._prefixlen == 128
for IPv6), yield an iterator with just ourself.
Args:
prefixlen_diff: An integer, the amount the prefix length
should be increased by. This should not be set if
new_prefix is also set.
new_prefix: The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix.
This should not be set if prefixlen_diff is also set.
Returns:
An iterator of IPv(4|6) objects.
Raises:
ValueError: The prefixlen_diff is too small or too large.
OR
prefixlen_diff and new_prefix are both set or new_prefix
is a smaller number than the current prefix (smaller
number means a larger network)
"""
if self._prefixlen == self._max_prefixlen:
yield self
return
if new_prefix is not None:
if new_prefix < self._prefixlen:
raise ValueError('new prefix must be longer')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = new_prefix - self._prefixlen
if prefixlen_diff < 0:
raise ValueError('prefix length diff must be > 0')
new_prefixlen = self._prefixlen + prefixlen_diff
if new_prefixlen > self._max_prefixlen:
raise ValueError(
'prefix length diff %d is invalid for netblock %s' % (
new_prefixlen, self))
start = int(self.network_address)
end = int(self.broadcast_address) + 1
step = (int(self.hostmask) + 1) >> prefixlen_diff
for new_addr in _compat_range(start, end, step):
current = self.__class__((new_addr, new_prefixlen))
yield current
def supernet(self, prefixlen_diff=1, new_prefix=None):
"""The supernet containing the current network.
Args:
prefixlen_diff: An integer, the amount the prefix length of
the network should be decreased by. For example, given a
/24 network and a prefixlen_diff of 3, a supernet with a
/21 netmask is returned.
Returns:
An IPv4 network object.
Raises:
ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have
a negative prefix length.
OR
If prefixlen_diff and new_prefix are both set or new_prefix is a
larger number than the current prefix (larger number means a
smaller network)
"""
if self._prefixlen == 0:
return self
if new_prefix is not None:
if new_prefix > self._prefixlen:
raise ValueError('new prefix must be shorter')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = self._prefixlen - new_prefix
new_prefixlen = self.prefixlen - prefixlen_diff
if new_prefixlen < 0:
raise ValueError(
'current prefixlen is %d, cannot have a prefixlen_diff of %d' %
(self.prefixlen, prefixlen_diff))
return self.__class__((
int(self.network_address) & (int(self.netmask) << prefixlen_diff),
new_prefixlen
))
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is a multicast address.
See RFC 2373 2.7 for details.
"""
return (self.network_address.is_multicast and
self.broadcast_address.is_multicast)
def subnet_of(self, other):
# always false if one is v4 and the other is v6.
if self._version != other._version:
return False
# dealing with another network.
if (hasattr(other, 'network_address') and
hasattr(other, 'broadcast_address')):
return (other.network_address <= self.network_address and
other.broadcast_address >= self.broadcast_address)
# dealing with another address
else:
raise TypeError('Unable to test subnet containment with element '
'of type %s' % type(other))
def supernet_of(self, other):
# always false if one is v4 and the other is v6.
if self._version != other._version:
return False
# dealing with another network.
if (hasattr(other, 'network_address') and
hasattr(other, 'broadcast_address')):
return (other.network_address >= self.network_address and
other.broadcast_address <= self.broadcast_address)
# dealing with another address
else:
raise TypeError('Unable to test subnet containment with element '
'of type %s' % type(other))
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within one of the
reserved IPv6 Network ranges.
"""
return (self.network_address.is_reserved and
self.broadcast_address.is_reserved)
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is reserved per RFC 4291.
"""
return (self.network_address.is_link_local and
self.broadcast_address.is_link_local)
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per
iana-ipv4-special-registry or iana-ipv6-special-registry.
"""
return (self.network_address.is_private and
self.broadcast_address.is_private)
@property
def is_global(self):
"""Test if this address is allocated for public networks.
Returns:
A boolean, True if the address is not reserved per
iana-ipv4-special-registry or iana-ipv6-special-registry.
"""
return not self.is_private
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 2373 2.5.2.
"""
return (self.network_address.is_unspecified and
self.broadcast_address.is_unspecified)
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback address as defined in
RFC 2373 2.5.3.
"""
return (self.network_address.is_loopback and
self.broadcast_address.is_loopback)
class _BaseV4(object):
"""Base IPv4 object.
The following methods are used by IPv4 objects in both single IP
addresses and networks.
"""
__slots__ = ()
_version = 4
# Equivalent to 255.255.255.255 or 32 bits of 1's.
_ALL_ONES = (2 ** IPV4LENGTH) - 1
_DECIMAL_DIGITS = frozenset('0123456789')
# the valid octets for host and netmasks. only useful for IPv4.
_valid_mask_octets = frozenset([255, 254, 252, 248, 240, 224, 192, 128, 0])
_max_prefixlen = IPV4LENGTH
# There are only a handful of valid v4 netmasks, so we cache them all
# when constructed (see _make_netmask()).
_netmask_cache = {}
def _explode_shorthand_ip_string(self):
return _compat_str(self)
@classmethod
def _make_netmask(cls, arg):
"""Make a (netmask, prefix_len) tuple from the given argument.
Argument can be:
- an integer (the prefix length)
- a string representing the prefix length (e.g. "24")
- a string representing the prefix netmask (e.g. "255.255.255.0")
"""
if arg not in cls._netmask_cache:
if isinstance(arg, _compat_int_types):
prefixlen = arg
else:
try:
# Check for a netmask in prefix length form
prefixlen = cls._prefix_from_prefix_string(arg)
except NetmaskValueError:
# Check for a netmask or hostmask in dotted-quad form.
# This may raise NetmaskValueError.
prefixlen = cls._prefix_from_ip_string(arg)
netmask = IPv4Address(cls._ip_int_from_prefix(prefixlen))
cls._netmask_cache[arg] = netmask, prefixlen
return cls._netmask_cache[arg]
@classmethod
def _ip_int_from_string(cls, ip_str):
"""Turn the given IP string into an integer for comparison.
Args:
ip_str: A string, the IP ip_str.
Returns:
The IP ip_str as an integer.
Raises:
AddressValueError: if ip_str isn't a valid IPv4 Address.
"""
if not ip_str:
raise AddressValueError('Address cannot be empty')
octets = ip_str.split('.')
if len(octets) != 4:
raise AddressValueError("Expected 4 octets in %r" % ip_str)
try:
return _compat_int_from_byte_vals(
map(cls._parse_octet, octets), 'big')
except ValueError as exc:
raise AddressValueError("%s in %r" % (exc, ip_str))
@classmethod
def _parse_octet(cls, octet_str):
"""Convert a decimal octet into an integer.
Args:
octet_str: A string, the number to parse.
Returns:
The octet as an integer.
Raises:
ValueError: if the octet isn't strictly a decimal from [0..255].
"""
if not octet_str:
raise ValueError("Empty octet not permitted")
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not cls._DECIMAL_DIGITS.issuperset(octet_str):
msg = "Only decimal digits permitted in %r"
raise ValueError(msg % octet_str)
# We do the length check second, since the invalid character error
# is likely to be more informative for the user
if len(octet_str) > 3:
msg = "At most 3 characters permitted in %r"
raise ValueError(msg % octet_str)
# Convert to integer (we know digits are legal)
octet_int = int(octet_str, 10)
# Any octets that look like they *might* be written in octal,
# and which don't look exactly the same in both octal and
# decimal are rejected as ambiguous
if octet_int > 7 and octet_str[0] == '0':
msg = "Ambiguous (octal/decimal) value in %r not permitted"
raise ValueError(msg % octet_str)
if octet_int > 255:
raise ValueError("Octet %d (> 255) not permitted" % octet_int)
return octet_int
@classmethod
def _string_from_ip_int(cls, ip_int):
"""Turns a 32-bit integer into dotted decimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
The IP address as a string in dotted decimal notation.
"""
return '.'.join(_compat_str(struct.unpack(b'!B', b)[0]
if isinstance(b, bytes)
else b)
for b in _compat_to_bytes(ip_int, 4, 'big'))
def _is_hostmask(self, ip_str):
"""Test if the IP string is a hostmask (rather than a netmask).
Args:
ip_str: A string, the potential hostmask.
Returns:
A boolean, True if the IP string is a hostmask.
"""
bits = ip_str.split('.')
try:
parts = [x for x in map(int, bits) if x in self._valid_mask_octets]
except ValueError:
return False
if len(parts) != len(bits):
return False
if parts[0] < parts[-1]:
return True
return False
def _reverse_pointer(self):
"""Return the reverse DNS pointer name for the IPv4 address.
This implements the method described in RFC1035 3.5.
"""
reverse_octets = _compat_str(self).split('.')[::-1]
return '.'.join(reverse_octets) + '.in-addr.arpa'
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def version(self):
return self._version
class IPv4Address(_BaseV4, _BaseAddress):
"""Represent and manipulate single IPv4 Addresses."""
__slots__ = ('_ip', '__weakref__')
def __init__(self, address):
"""
Args:
address: A string or integer representing the IP
Additionally, an integer can be passed, so
IPv4Address('192.0.2.1') == IPv4Address(3221225985).
or, more generally
IPv4Address(int(IPv4Address('192.0.2.1'))) ==
IPv4Address('192.0.2.1')
Raises:
AddressValueError: If ipaddress isn't a valid IPv4 address.
"""
# Efficient constructor from integer.
if isinstance(address, _compat_int_types):
self._check_int_address(address)
self._ip = address
return
# Constructing from a packed address
if isinstance(address, bytes):
self._check_packed_address(address, 4)
bvs = _compat_bytes_to_byte_vals(address)
self._ip = _compat_int_from_byte_vals(bvs, 'big')
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = _compat_str(address)
if '/' in addr_str:
raise AddressValueError("Unexpected '/' in %r" % address)
self._ip = self._ip_int_from_string(addr_str)
@property
def packed(self):
"""The binary representation of this address."""
return v4_int_to_packed(self._ip)
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within the
reserved IPv4 Network range.
"""
return self in self._constants._reserved_network
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per
iana-ipv4-special-registry.
"""
return any(self in net for net in self._constants._private_networks)
@property
def is_global(self):
return (
self not in self._constants._public_network and
not self.is_private)
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is multicast.
See RFC 3171 for details.
"""
return self in self._constants._multicast_network
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 5735 3.
"""
return self == self._constants._unspecified_address
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback per RFC 3330.
"""
return self in self._constants._loopback_network
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is link-local per RFC 3927.
"""
return self in self._constants._linklocal_network
class IPv4Interface(IPv4Address):
def __init__(self, address):
if isinstance(address, (bytes, _compat_int_types)):
IPv4Address.__init__(self, address)
self.network = IPv4Network(self._ip)
self._prefixlen = self._max_prefixlen
return
if isinstance(address, tuple):
IPv4Address.__init__(self, address[0])
if len(address) > 1:
self._prefixlen = int(address[1])
else:
self._prefixlen = self._max_prefixlen
self.network = IPv4Network(address, strict=False)
self.netmask = self.network.netmask
self.hostmask = self.network.hostmask
return
addr = _split_optional_netmask(address)
IPv4Address.__init__(self, addr[0])
self.network = IPv4Network(address, strict=False)
self._prefixlen = self.network._prefixlen
self.netmask = self.network.netmask
self.hostmask = self.network.hostmask
def __str__(self):
return '%s/%d' % (self._string_from_ip_int(self._ip),
self.network.prefixlen)
def __eq__(self, other):
address_equal = IPv4Address.__eq__(self, other)
if not address_equal or address_equal is NotImplemented:
return address_equal
try:
return self.network == other.network
except AttributeError:
# An interface with an associated network is NOT the
# same as an unassociated address. That's why the hash
# takes the extra info into account.
return False
def __lt__(self, other):
address_less = IPv4Address.__lt__(self, other)
if address_less is NotImplemented:
return NotImplemented
try:
return self.network < other.network
except AttributeError:
# We *do* allow addresses and interfaces to be sorted. The
# unassociated address is considered less than all interfaces.
return False
def __hash__(self):
return self._ip ^ self._prefixlen ^ int(self.network.network_address)
__reduce__ = _IPAddressBase.__reduce__
@property
def ip(self):
return IPv4Address(self._ip)
@property
def with_prefixlen(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.netmask)
@property
def with_hostmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.hostmask)
class IPv4Network(_BaseV4, _BaseNetwork):
"""This class represents and manipulates 32-bit IPv4 network + addresses..
Attributes: [examples for IPv4Network('192.0.2.0/27')]
.network_address: IPv4Address('192.0.2.0')
.hostmask: IPv4Address('0.0.0.31')
.broadcast_address: IPv4Address('192.0.2.32')
.netmask: IPv4Address('255.255.255.224')
.prefixlen: 27
"""
# Class to use when creating address objects
_address_class = IPv4Address
def __init__(self, address, strict=True):
"""Instantiate a new IPv4 network object.
Args:
address: A string or integer representing the IP [& network].
'192.0.2.0/24'
'192.0.2.0/255.255.255.0'
'192.0.0.2/0.0.0.255'
are all functionally the same in IPv4. Similarly,
'192.0.2.1'
'192.0.2.1/255.255.255.255'
'192.0.2.1/32'
are also functionally equivalent. That is to say, failing to
provide a subnetmask will create an object with a mask of /32.
If the mask (portion after the / in the argument) is given in
dotted quad form, it is treated as a netmask if it starts with a
non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it
starts with a zero field (e.g. 0.255.255.255 == /8), with the
single exception of an all-zero mask which is treated as a
netmask == /0. If no mask is given, a default of /32 is used.
Additionally, an integer can be passed, so
IPv4Network('192.0.2.1') == IPv4Network(3221225985)
or, more generally
IPv4Interface(int(IPv4Interface('192.0.2.1'))) ==
IPv4Interface('192.0.2.1')
Raises:
AddressValueError: If ipaddress isn't a valid IPv4 address.
NetmaskValueError: If the netmask isn't valid for
an IPv4 address.
ValueError: If strict is True and a network address is not
supplied.
"""
_BaseNetwork.__init__(self, address)
# Constructing from a packed address or integer
if isinstance(address, (_compat_int_types, bytes)):
self.network_address = IPv4Address(address)
self.netmask, self._prefixlen = self._make_netmask(
self._max_prefixlen)
# fixme: address/network test here.
return
if isinstance(address, tuple):
if len(address) > 1:
arg = address[1]
else:
# We weren't given an address[1]
arg = self._max_prefixlen
self.network_address = IPv4Address(address[0])
self.netmask, self._prefixlen = self._make_netmask(arg)
packed = int(self.network_address)
if packed & int(self.netmask) != packed:
if strict:
raise ValueError('%s has host bits set' % self)
else:
self.network_address = IPv4Address(packed &
int(self.netmask))
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = _split_optional_netmask(address)
self.network_address = IPv4Address(self._ip_int_from_string(addr[0]))
if len(addr) == 2:
arg = addr[1]
else:
arg = self._max_prefixlen
self.netmask, self._prefixlen = self._make_netmask(arg)
if strict:
if (IPv4Address(int(self.network_address) & int(self.netmask)) !=
self.network_address):
raise ValueError('%s has host bits set' % self)
self.network_address = IPv4Address(int(self.network_address) &
int(self.netmask))
if self._prefixlen == (self._max_prefixlen - 1):
self.hosts = self.__iter__
@property
def is_global(self):
"""Test if this address is allocated for public networks.
Returns:
A boolean, True if the address is not reserved per
iana-ipv4-special-registry.
"""
return (not (self.network_address in IPv4Network('100.64.0.0/10') and
self.broadcast_address in IPv4Network('100.64.0.0/10')) and
not self.is_private)
class _IPv4Constants(object):
_linklocal_network = IPv4Network('169.254.0.0/16')
_loopback_network = IPv4Network('127.0.0.0/8')
_multicast_network = IPv4Network('224.0.0.0/4')
_public_network = IPv4Network('100.64.0.0/10')
_private_networks = [
IPv4Network('0.0.0.0/8'),
IPv4Network('10.0.0.0/8'),
IPv4Network('127.0.0.0/8'),
IPv4Network('169.254.0.0/16'),
IPv4Network('172.16.0.0/12'),
IPv4Network('192.0.0.0/29'),
IPv4Network('192.0.0.170/31'),
IPv4Network('192.0.2.0/24'),
IPv4Network('192.168.0.0/16'),
IPv4Network('198.18.0.0/15'),
IPv4Network('198.51.100.0/24'),
IPv4Network('203.0.113.0/24'),
IPv4Network('240.0.0.0/4'),
IPv4Network('255.255.255.255/32'),
]
_reserved_network = IPv4Network('240.0.0.0/4')
_unspecified_address = IPv4Address('0.0.0.0')
IPv4Address._constants = _IPv4Constants
class _BaseV6(object):
"""Base IPv6 object.
The following methods are used by IPv6 objects in both single IP
addresses and networks.
"""
__slots__ = ()
_version = 6
_ALL_ONES = (2 ** IPV6LENGTH) - 1
_HEXTET_COUNT = 8
_HEX_DIGITS = frozenset('0123456789ABCDEFabcdef')
_max_prefixlen = IPV6LENGTH
# There are only a bunch of valid v6 netmasks, so we cache them all
# when constructed (see _make_netmask()).
_netmask_cache = {}
@classmethod
def _make_netmask(cls, arg):
"""Make a (netmask, prefix_len) tuple from the given argument.
Argument can be:
- an integer (the prefix length)
- a string representing the prefix length (e.g. "24")
- a string representing the prefix netmask (e.g. "255.255.255.0")
"""
if arg not in cls._netmask_cache:
if isinstance(arg, _compat_int_types):
prefixlen = arg
else:
prefixlen = cls._prefix_from_prefix_string(arg)
netmask = IPv6Address(cls._ip_int_from_prefix(prefixlen))
cls._netmask_cache[arg] = netmask, prefixlen
return cls._netmask_cache[arg]
@classmethod
def _ip_int_from_string(cls, ip_str):
"""Turn an IPv6 ip_str into an integer.
Args:
ip_str: A string, the IPv6 ip_str.
Returns:
An int, the IPv6 address
Raises:
AddressValueError: if ip_str isn't a valid IPv6 Address.
"""
if not ip_str:
raise AddressValueError('Address cannot be empty')
parts = ip_str.split(':')
# An IPv6 address needs at least 2 colons (3 parts).
_min_parts = 3
if len(parts) < _min_parts:
msg = "At least %d parts expected in %r" % (_min_parts, ip_str)
raise AddressValueError(msg)
# If the address has an IPv4-style suffix, convert it to hexadecimal.
if '.' in parts[-1]:
try:
ipv4_int = IPv4Address(parts.pop())._ip
except AddressValueError as exc:
raise AddressValueError("%s in %r" % (exc, ip_str))
parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF))
parts.append('%x' % (ipv4_int & 0xFFFF))
# An IPv6 address can't have more than 8 colons (9 parts).
# The extra colon comes from using the "::" notation for a single
# leading or trailing zero part.
_max_parts = cls._HEXTET_COUNT + 1
if len(parts) > _max_parts:
msg = "At most %d colons permitted in %r" % (
_max_parts - 1, ip_str)
raise AddressValueError(msg)
# Disregarding the endpoints, find '::' with nothing in between.
# This indicates that a run of zeroes has been skipped.
skip_index = None
for i in _compat_range(1, len(parts) - 1):
if not parts[i]:
if skip_index is not None:
# Can't have more than one '::'
msg = "At most one '::' permitted in %r" % ip_str
raise AddressValueError(msg)
skip_index = i
# parts_hi is the number of parts to copy from above/before the '::'
# parts_lo is the number of parts to copy from below/after the '::'
if skip_index is not None:
# If we found a '::', then check if it also covers the endpoints.
parts_hi = skip_index
parts_lo = len(parts) - skip_index - 1
if not parts[0]:
parts_hi -= 1
if parts_hi:
msg = "Leading ':' only permitted as part of '::' in %r"
raise AddressValueError(msg % ip_str) # ^: requires ^::
if not parts[-1]:
parts_lo -= 1
if parts_lo:
msg = "Trailing ':' only permitted as part of '::' in %r"
raise AddressValueError(msg % ip_str) # :$ requires ::$
parts_skipped = cls._HEXTET_COUNT - (parts_hi + parts_lo)
if parts_skipped < 1:
msg = "Expected at most %d other parts with '::' in %r"
raise AddressValueError(msg % (cls._HEXTET_COUNT - 1, ip_str))
else:
# Otherwise, allocate the entire address to parts_hi. The
# endpoints could still be empty, but _parse_hextet() will check
# for that.
if len(parts) != cls._HEXTET_COUNT:
msg = "Exactly %d parts expected without '::' in %r"
raise AddressValueError(msg % (cls._HEXTET_COUNT, ip_str))
if not parts[0]:
msg = "Leading ':' only permitted as part of '::' in %r"
raise AddressValueError(msg % ip_str) # ^: requires ^::
if not parts[-1]:
msg = "Trailing ':' only permitted as part of '::' in %r"
raise AddressValueError(msg % ip_str) # :$ requires ::$
parts_hi = len(parts)
parts_lo = 0
parts_skipped = 0
try:
# Now, parse the hextets into a 128-bit integer.
ip_int = 0
for i in range(parts_hi):
ip_int <<= 16
ip_int |= cls._parse_hextet(parts[i])
ip_int <<= 16 * parts_skipped
for i in range(-parts_lo, 0):
ip_int <<= 16
ip_int |= cls._parse_hextet(parts[i])
return ip_int
except ValueError as exc:
raise AddressValueError("%s in %r" % (exc, ip_str))
@classmethod
def _parse_hextet(cls, hextet_str):
"""Convert an IPv6 hextet string into an integer.
Args:
hextet_str: A string, the number to parse.
Returns:
The hextet as an integer.
Raises:
ValueError: if the input isn't strictly a hex number from
[0..FFFF].
"""
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not cls._HEX_DIGITS.issuperset(hextet_str):
raise ValueError("Only hex digits permitted in %r" % hextet_str)
# We do the length check second, since the invalid character error
# is likely to be more informative for the user
if len(hextet_str) > 4:
msg = "At most 4 characters permitted in %r"
raise ValueError(msg % hextet_str)
# Length check means we can skip checking the integer value
return int(hextet_str, 16)
@classmethod
def _compress_hextets(cls, hextets):
"""Compresses a list of hextets.
Compresses a list of strings, replacing the longest continuous
sequence of "0" in the list with "" and adding empty strings at
the beginning or at the end of the string such that subsequently
calling ":".join(hextets) will produce the compressed version of
the IPv6 address.
Args:
hextets: A list of strings, the hextets to compress.
Returns:
A list of strings.
"""
best_doublecolon_start = -1
best_doublecolon_len = 0
doublecolon_start = -1
doublecolon_len = 0
for index, hextet in enumerate(hextets):
if hextet == '0':
doublecolon_len += 1
if doublecolon_start == -1:
# Start of a sequence of zeros.
doublecolon_start = index
if doublecolon_len > best_doublecolon_len:
# This is the longest sequence of zeros so far.
best_doublecolon_len = doublecolon_len
best_doublecolon_start = doublecolon_start
else:
doublecolon_len = 0
doublecolon_start = -1
if best_doublecolon_len > 1:
best_doublecolon_end = (best_doublecolon_start +
best_doublecolon_len)
# For zeros at the end of the address.
if best_doublecolon_end == len(hextets):
hextets += ['']
hextets[best_doublecolon_start:best_doublecolon_end] = ['']
# For zeros at the beginning of the address.
if best_doublecolon_start == 0:
hextets = [''] + hextets
return hextets
@classmethod
def _string_from_ip_int(cls, ip_int=None):
"""Turns a 128-bit integer into hexadecimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
A string, the hexadecimal representation of the address.
Raises:
ValueError: The address is bigger than 128 bits of all ones.
"""
if ip_int is None:
ip_int = int(cls._ip)
if ip_int > cls._ALL_ONES:
raise ValueError('IPv6 address is too large')
hex_str = '%032x' % ip_int
hextets = ['%x' % int(hex_str[x:x + 4], 16) for x in range(0, 32, 4)]
hextets = cls._compress_hextets(hextets)
return ':'.join(hextets)
def _explode_shorthand_ip_string(self):
"""Expand a shortened IPv6 address.
Args:
ip_str: A string, the IPv6 address.
Returns:
A string, the expanded IPv6 address.
"""
if isinstance(self, IPv6Network):
ip_str = _compat_str(self.network_address)
elif isinstance(self, IPv6Interface):
ip_str = _compat_str(self.ip)
else:
ip_str = _compat_str(self)
ip_int = self._ip_int_from_string(ip_str)
hex_str = '%032x' % ip_int
parts = [hex_str[x:x + 4] for x in range(0, 32, 4)]
if isinstance(self, (_BaseNetwork, IPv6Interface)):
return '%s/%d' % (':'.join(parts), self._prefixlen)
return ':'.join(parts)
def _reverse_pointer(self):
"""Return the reverse DNS pointer name for the IPv6 address.
This implements the method described in RFC3596 2.5.
"""
reverse_chars = self.exploded[::-1].replace(':', '')
return '.'.join(reverse_chars) + '.ip6.arpa'
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def version(self):
return self._version
class IPv6Address(_BaseV6, _BaseAddress):
"""Represent and manipulate single IPv6 Addresses."""
__slots__ = ('_ip', '__weakref__')
def __init__(self, address):
"""Instantiate a new IPv6 address object.
Args:
address: A string or integer representing the IP
Additionally, an integer can be passed, so
IPv6Address('2001:db8::') ==
IPv6Address(42540766411282592856903984951653826560)
or, more generally
IPv6Address(int(IPv6Address('2001:db8::'))) ==
IPv6Address('2001:db8::')
Raises:
AddressValueError: If address isn't a valid IPv6 address.
"""
# Efficient constructor from integer.
if isinstance(address, _compat_int_types):
self._check_int_address(address)
self._ip = address
return
# Constructing from a packed address
if isinstance(address, bytes):
self._check_packed_address(address, 16)
bvs = _compat_bytes_to_byte_vals(address)
self._ip = _compat_int_from_byte_vals(bvs, 'big')
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = _compat_str(address)
if '/' in addr_str:
raise AddressValueError("Unexpected '/' in %r" % address)
self._ip = self._ip_int_from_string(addr_str)
@property
def packed(self):
"""The binary representation of this address."""
return v6_int_to_packed(self._ip)
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is a multicast address.
See RFC 2373 2.7 for details.
"""
return self in self._constants._multicast_network
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within one of the
reserved IPv6 Network ranges.
"""
return any(self in x for x in self._constants._reserved_networks)
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is reserved per RFC 4291.
"""
return self in self._constants._linklocal_network
@property
def is_site_local(self):
"""Test if the address is reserved for site-local.
Note that the site-local address space has been deprecated by RFC 3879.
Use is_private to test if this address is in the space of unique local
addresses as defined by RFC 4193.
Returns:
A boolean, True if the address is reserved per RFC 3513 2.5.6.
"""
return self in self._constants._sitelocal_network
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per
iana-ipv6-special-registry.
"""
return any(self in net for net in self._constants._private_networks)
@property
def is_global(self):
"""Test if this address is allocated for public networks.
Returns:
A boolean, true if the address is not reserved per
iana-ipv6-special-registry.
"""
return not self.is_private
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 2373 2.5.2.
"""
return self._ip == 0
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback address as defined in
RFC 2373 2.5.3.
"""
return self._ip == 1
@property
def ipv4_mapped(self):
"""Return the IPv4 mapped address.
Returns:
If the IPv6 address is a v4 mapped address, return the
IPv4 mapped address. Return None otherwise.
"""
if (self._ip >> 32) != 0xFFFF:
return None
return IPv4Address(self._ip & 0xFFFFFFFF)
@property
def teredo(self):
"""Tuple of embedded teredo IPs.
Returns:
Tuple of the (server, client) IPs or None if the address
doesn't appear to be a teredo address (doesn't start with
2001::/32)
"""
if (self._ip >> 96) != 0x20010000:
return None
return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF),
IPv4Address(~self._ip & 0xFFFFFFFF))
@property
def sixtofour(self):
"""Return the IPv4 6to4 embedded address.
Returns:
The IPv4 6to4-embedded address if present or None if the
address doesn't appear to contain a 6to4 embedded address.
"""
if (self._ip >> 112) != 0x2002:
return None
return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)
class IPv6Interface(IPv6Address):
def __init__(self, address):
if isinstance(address, (bytes, _compat_int_types)):
IPv6Address.__init__(self, address)
self.network = IPv6Network(self._ip)
self._prefixlen = self._max_prefixlen
return
if isinstance(address, tuple):
IPv6Address.__init__(self, address[0])
if len(address) > 1:
self._prefixlen = int(address[1])
else:
self._prefixlen = self._max_prefixlen
self.network = IPv6Network(address, strict=False)
self.netmask = self.network.netmask
self.hostmask = self.network.hostmask
return
addr = _split_optional_netmask(address)
IPv6Address.__init__(self, addr[0])
self.network = IPv6Network(address, strict=False)
self.netmask = self.network.netmask
self._prefixlen = self.network._prefixlen
self.hostmask = self.network.hostmask
def __str__(self):
return '%s/%d' % (self._string_from_ip_int(self._ip),
self.network.prefixlen)
def __eq__(self, other):
address_equal = IPv6Address.__eq__(self, other)
if not address_equal or address_equal is NotImplemented:
return address_equal
try:
return self.network == other.network
except AttributeError:
# An interface with an associated network is NOT the
# same as an unassociated address. That's why the hash
# takes the extra info into account.
return False
def __lt__(self, other):
address_less = IPv6Address.__lt__(self, other)
if address_less is NotImplemented:
return NotImplemented
try:
return self.network < other.network
except AttributeError:
# We *do* allow addresses and interfaces to be sorted. The
# unassociated address is considered less than all interfaces.
return False
def __hash__(self):
return self._ip ^ self._prefixlen ^ int(self.network.network_address)
__reduce__ = _IPAddressBase.__reduce__
@property
def ip(self):
return IPv6Address(self._ip)
@property
def with_prefixlen(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.netmask)
@property
def with_hostmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.hostmask)
@property
def is_unspecified(self):
return self._ip == 0 and self.network.is_unspecified
@property
def is_loopback(self):
return self._ip == 1 and self.network.is_loopback
class IPv6Network(_BaseV6, _BaseNetwork):
"""This class represents and manipulates 128-bit IPv6 networks.
Attributes: [examples for IPv6('2001:db8::1000/124')]
.network_address: IPv6Address('2001:db8::1000')
.hostmask: IPv6Address('::f')
.broadcast_address: IPv6Address('2001:db8::100f')
.netmask: IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0')
.prefixlen: 124
"""
# Class to use when creating address objects
_address_class = IPv6Address
def __init__(self, address, strict=True):
"""Instantiate a new IPv6 Network object.
Args:
address: A string or integer representing the IPv6 network or the
IP and prefix/netmask.
'2001:db8::/128'
'2001:db8:0000:0000:0000:0000:0000:0000/128'
'2001:db8::'
are all functionally the same in IPv6. That is to say,
failing to provide a subnetmask will create an object with
a mask of /128.
Additionally, an integer can be passed, so
IPv6Network('2001:db8::') ==
IPv6Network(42540766411282592856903984951653826560)
or, more generally
IPv6Network(int(IPv6Network('2001:db8::'))) ==
IPv6Network('2001:db8::')
strict: A boolean. If true, ensure that we have been passed
A true network address, eg, 2001:db8::1000/124 and not an
IP address on a network, eg, 2001:db8::1/124.
Raises:
AddressValueError: If address isn't a valid IPv6 address.
NetmaskValueError: If the netmask isn't valid for
an IPv6 address.
ValueError: If strict was True and a network address was not
supplied.
"""
_BaseNetwork.__init__(self, address)
# Efficient constructor from integer or packed address
if isinstance(address, (bytes, _compat_int_types)):
self.network_address = IPv6Address(address)
self.netmask, self._prefixlen = self._make_netmask(
self._max_prefixlen)
return
if isinstance(address, tuple):
if len(address) > 1:
arg = address[1]
else:
arg = self._max_prefixlen
self.netmask, self._prefixlen = self._make_netmask(arg)
self.network_address = IPv6Address(address[0])
packed = int(self.network_address)
if packed & int(self.netmask) != packed:
if strict:
raise ValueError('%s has host bits set' % self)
else:
self.network_address = IPv6Address(packed &
int(self.netmask))
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = _split_optional_netmask(address)
self.network_address = IPv6Address(self._ip_int_from_string(addr[0]))
if len(addr) == 2:
arg = addr[1]
else:
arg = self._max_prefixlen
self.netmask, self._prefixlen = self._make_netmask(arg)
if strict:
if (IPv6Address(int(self.network_address) & int(self.netmask)) !=
self.network_address):
raise ValueError('%s has host bits set' % self)
self.network_address = IPv6Address(int(self.network_address) &
int(self.netmask))
if self._prefixlen == (self._max_prefixlen - 1):
self.hosts = self.__iter__
def hosts(self):
"""Generate Iterator over usable hosts in a network.
This is like __iter__ except it doesn't return the
Subnet-Router anycast address.
"""
network = int(self.network_address)
broadcast = int(self.broadcast_address)
for x in _compat_range(network + 1, broadcast + 1):
yield self._address_class(x)
@property
def is_site_local(self):
"""Test if the address is reserved for site-local.
Note that the site-local address space has been deprecated by RFC 3879.
Use is_private to test if this address is in the space of unique local
addresses as defined by RFC 4193.
Returns:
A boolean, True if the address is reserved per RFC 3513 2.5.6.
"""
return (self.network_address.is_site_local and
self.broadcast_address.is_site_local)
class _IPv6Constants(object):
_linklocal_network = IPv6Network('fe80::/10')
_multicast_network = IPv6Network('ff00::/8')
_private_networks = [
IPv6Network('::1/128'),
IPv6Network('::/128'),
IPv6Network('::ffff:0:0/96'),
IPv6Network('100::/64'),
IPv6Network('2001::/23'),
IPv6Network('2001:2::/48'),
IPv6Network('2001:db8::/32'),
IPv6Network('2001:10::/28'),
IPv6Network('fc00::/7'),
IPv6Network('fe80::/10'),
]
_reserved_networks = [
IPv6Network('::/8'), IPv6Network('100::/8'),
IPv6Network('200::/7'), IPv6Network('400::/6'),
IPv6Network('800::/5'), IPv6Network('1000::/4'),
IPv6Network('4000::/3'), IPv6Network('6000::/3'),
IPv6Network('8000::/3'), IPv6Network('A000::/3'),
IPv6Network('C000::/3'), IPv6Network('E000::/4'),
IPv6Network('F000::/5'), IPv6Network('F800::/6'),
IPv6Network('FE00::/9'),
]
_sitelocal_network = IPv6Network('fec0::/10')
IPv6Address._constants = _IPv6Constants